
56 The Delphi Magazine Issue 26

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

or write/fax us at The Delphi Magazine

Data Aware Control Request

QNow that we have the nice
date/time picker in Delphi 3,

has anyone made a data aware
version yet? I could do with one but
don’t know how to make it myself.

AI haven’t encountered such a
beast, but taking the chal-

lenge I read through the data aware
controls chapter of The Revolution-
ary Guide to Delphi 2 (Wrox Press,
various authors) and set to work.
The results are in DBPicker.Pas
(Listing 1 for the class definition).

The general idea with making
field-based data aware controls is
to make a new class that contains a
TFieldDataLinkobject (created and
destroyed respectively by the con-
structor and destructor). The data
link object is the real machine that
drives a data aware control. The
standard properties on offer from a
data aware control (ReadOnly,
Field, DataField and DataSource)
are implemented as routines that
return or set properties of the data
link. Listing 2 shows the reader and
writer for the DataSourceproperty.

The DataChange and UpdateData
methods (Listing 3) are event han-
dlers for the field data link object.
The OnDataChange event triggers
when the value of the underlying
field changes, either by the current
record changing or the field itself
being modified. If the data aware
control hasn’t been connected to a
field in an open table, the control
displays the current date or time.

OnUpdateData fires when the user
changes the field value via the data
aware control. The appropriate
field object is given new values
taken from the Date and Time
properties of TDBDateTimePicker.

In common with any other com-
ponent with published properties

that can be connected to other
components, the TDBDateTime-
Picker overrides the Notification
method (Listing 4). To ensure noti-
fications arrive of the data source
is on another form or data module,
its FreeNotification method is
called when the datasource is
assigned.

The DataSource property can be
connected to the TDataSource com-

ponent, but what if the component
is deleted from the form designer?
The Notification method is called
when a component is added or
deleted. It checks whether the data
source component matches the
one reflected by the DataSource
property. If so, it sets the property
to nil to avoid further problems.

➤ Listing 1

➤ Above: Listing 2 ➤ Below: Listing 3

procedure TDBDateTimePicker.DataChange(Sender: TObject);
begin
if (Field = nil) or (FDataLink.DataSet.State = dsInsert) then
case Kind of //If no data link is set up, show current date or time
dtkDate: Date := SysUtils.Date;
dtkTime: Time := SysUtils.Time

end
else
case Kind of //Update control if field changes
dtkDate: Date := FDataLink.Field.AsDateTime;
dtkTime: Time := FDataLink.Field.AsDateTime

end
end;
procedure TDBDateTimePicker.UpdateData(Sender: TObject);
begin
if Kind = dtkDate then //Update field as necessary
FDataLink.Field.AsDateTime := Date

else
FDataLink.Field.AsDateTime := Time

end;

procedure TDBDateTimePicker.SetDataSource(Value: TDataSource);
begin
FDataLink.DataSource := Value
if Value <> nil then Value.FreeNotification(Self);

end;
function TDBDateTimePicker.GetDataSource: TDataSource;
begin
Result := FDataLink.DataSource

end;

TDBDateTimePicker = class(TDateTimePicker)
private
FDataLink: TFieldDataLink;

protected
procedure SetDataSource(Value: TDataSource);
function GetDataSource: TDataSource;
procedure SetDataField(const Value: String);
function GetDataField: String;
function GetField: TField;
procedure SetReadOnly(Value: Boolean);
function GetReadOnly: Boolean;
procedure DataChange(Sender: TObject);
procedure UpdateData(Sender: TObject);
procedure Notification(AComponent: TComponent;
Operation: TOperation); override;

procedure CMEnter(var Msg: TCMEnter); message cm_Enter;
procedure CMExit(var Msg: TCMExit); message cm_Exit;
procedure CNNotify(var Msg: TWMNotify); message cn_Notify;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
property Field: TField read GetField;

published
property DataField: String read GetDataField write SetDataField;
property DataSource: TDataSource read GetDataSource write SetDataSource;
property ReadOnly: Boolean read GetReadOnly write SetReadOnly;

end;

October 1997 The Delphi Magazine 57

procedure TDBDateTimePicker.Notification(
AComponent: TComponent; Operation: TOperation);

begin
inherited;
if (Operation=opRemove) and Assigned(FDataLink)
and (AComponent=DataSource) then
//Blank out datasource value if datasource is deleted from form
DataSource := nil

end;

➤ Listing 4
➤ Figure 1

Pretty much all that’s left here
are some Windows message han-
dlers (shown in Listing 5), although
the messages they handle are
manufactured by Delphi. cm_Enter
and cm_Exit are sent when a con-
trol gains and loses focus respec-
tively. When the control gains
focus it should ensure it has the
current field value. When it loses
focus it should make sure the
underlying field object has the
value shown in the control. If there
is some validation problem, then
focus is left on the control.

cn_Notify notifies the control
when Windows sends its parent
useful message information. In par-
ticular, when the calendar part of
the control closes up the value is
written to the field. Also when the
control’s value actually changes

we ensure the data link knows the
field value has been modified.

One final thing to note is that the
destructor destroys the field data
link object and then proceeds to
set its object reference to nil (see
Listing 6). This is a common prac-
tice to avoid access violations, but
in a destructor one might think it
overkill. However it is very impor-
tant. During the inherited destruc-
tion the Notification method gets
called again. If the object reference
is left with a non-nil value after the
data link has gone we will get an
access violation.

For additional information on
making data aware components in
Delphi 3, choose Help | Developing
Applications and scroll down until
you see the section of links entitled
Making a control data-aware.

➤ Above: Listing 5 ➤ Below: Listing 6

procedure TDBDateTimePicker.CMEnter(var Msg: TCMEnter);
begin
Invalidate; //Make sure calendar is up to date upon entry
inherited

end;
procedure TDBDateTimePicker.CMExit(var Msg: TCMExit);
begin
try //Update other data aware controls when user tabs away
FDataLink.UpdateRecord

except
SetFocus;
raise

end;
inherited

end;
procedure TDBDateTimePicker.CNNotify(var Msg: TWMNotify);
begin
case Msg.NMHdr^.Code of
dtn_CloseUp: //Update all other data aware controls
Perform(cm_Exit, 0, 0); //when calendar pops up

dtn_DateTimeChange: //Update field value when calendar changes
begin
FDataLink.Edit;
FDataLink.Modified;

end;
end;
inherited;

end;

constructor TDBDateTimePicker.Create(AOwner: TComponent);
begin
inherited;
FDataLink := TFieldDataLink.Create;
FDataLink.OnDataChange := DataChange;
FDataLink.OnUpdateData := UpdateData

end;
destructor TDBDateTimePicker.Destroy;
begin
FDataLink.Free;
FDataLink := nil;
inherited

end;

I am not suggesting that this is
necessarily a foolproof bug free
implementation of a data-aware
date-time picker, but it will hope-
fully give you something to work
from. Figure 1 shows it in use
against the SaleDate field in the
grid.

Clipboard

QI want to store some data in
the clipboard in a proprie-

tary format. However, I still want to
be able to paste a human readable
version into applications like Note-
pad and Word. How do I store mul-
tiple versions of my data in the
clipboard?

AIt all stems from using the
TClipBoard object repre-

sented by the ClipBrd unit’s Clip-
Board variable in an appropriate
way. Delphi 2 actually changed
Clipboard from being a global vari-
able to being a function in order to
help the smart linker strip out
code that used the ClipBrd unit but
never referred to the Clipboard
symbol.

Generally speaking, you write
information into the clipboard in
one format. To write a string, you
simply write (and then read) Clip-
board.AsText. To read or write a

58 The Delphi Magazine Issue 26

TPicture or TBitmap object you call
the Clipboard.Assign, passing the
appropriate object as a parameter,
or you call that object’s Assign
method, passing the Clipboard
object as a parameter. So the fol-
lowing assignments copy text and
a bitmap or metafile to and from
the clipboard:

Clipboard.AsText := Edit1.Text;

Edit2.Text := Clipboard.AsText;

...
Clipboard.Assign(Image1.Picture);

Image1.Picture.Bitmap.Assign(

Clipboard);

In order to write information to the
clipboard in more than one format,
you have to open up the clipboard,
do all the storing and then close it
(remembering to use a try/finally
statement to ensure the clipboard
definitely gets closed).

The ClipEg.Dpr project shows a
simple example of this by copying
text and a bitmap to the clipboard,
and then pasting both back again
(see Listing 7). To make it more
interesting, we can make our own
proprietary format to match the
question more closely. Just making
up an arbitrary data structure,
we can see some code from
ClipEg2.Dpr in Listing 8 that
defines the custom record and
registers a clipboard format.

Listing 9 also shows code that
copies a version of the record
(filled in from various user inter-
face controls) and also a textual
representation of the record into
the clipboard. This involves using
Windows routines to allocate
memory (but not de-allocate it
unless there is a problem) and
locking and unlocking the memory
block whilst writing into it.

The other half of the listing takes
the information back from the clip-
board, both the data record and

the text version. Note that the
memory block is owned by the clip-
board so there is no need to free it.

Note also that you can check if a
given information format is in the
clipboard using Clipboard.HasFor-
mat. Pre-defined formats include
CF_TEXT for textual information,
CF_COMPONENT for a Delphi compo-
nent, CF_BITMAP for a bitmap and
CF_PICTURE for any form of image
supported by a TPicture object.

➤ Listing 9

procedure TForm1.btnCopyClick(Sender: TObject);
var
Data: THandle;
DataPtr: Pointer;
DataRec: TDataRecord;

begin
{ Open clipboard for several formats to be added }
Clipboard.Open;
try
{ Allocate appropriate memory block }
Data := GlobalAlloc(GMEM_MOVEABLE, SizeOf(DataRec));
try
DataPtr := GlobalLock(Data); { Lock memory block }
try
{ Set the record up }
DataRec.Number1 := UpDown1.Position;
DataRec.Number2 := UpDown2.Position;
DataRec.AString := Edit3.Text;
{ Copy record to locked memory block }
Move(DataRec, DataPtr^, SizeOf(DataRec));
{ Copy block into clipboard }
Clipboard.SetAsHandle(CF_CLINICRECORD, Data);
{ Add a nice textual version into clipboard }
Clipboard.AsText := Format(’Number 1: %d'#13#10',
‘Number 2: %d'#13#10'AString: %s',
[DataRec.Number1, DataRec.Number2,
DataRec.AString])

finally
GlobalUnlock(Data) { Unlock memory block }

end
except
{ Normally don't free this memory, it belongs to the
clipboard. But if there's an error, then do the
rightful thing }

GlobalFree(Data);
raise

end
finally
Clipboard.Close { Close clipboard }

end
end;
procedure TForm1.btnPasteClick(Sender: TObject);
var
Data: THandle;
DataPtr: Pointer;
DataRec: TDataRecord;

begin
Clipboard.Open;
try
{ Get memory block handle }
Data := Clipboard.GetAsHandle(CF_CLINICRECORD);
{ Turn it into a pointer by locking it }
DataPtr := GlobalLock(Data);
try
{ Get data record and update UI }
Move(DataPtr^, DataRec, SizeOf(DataRec));
UpDown1.Position := DataRec.Number1;
UpDown2.Position := DataRec.Number2;
Edit3.Text := DataRec.AString;
{ Don't forget the textual version }
Memo1.Text := Clipboard.AsText;

finally
GlobalUnlock(Data) { Unlock memory block }

end
finally
Clipboard.Close

end;
end;

➤ Above: Listing 7 ➤ Below: Listing 8

procedure TForm1.btnCopyClick(Sender: TObject);
begin
Clipboard.Open;
try
Clipboard.AsText := Edit1.Text;
Clipboard.Assign(Image1.Picture)
{ or Clipboard.Assign(Image1.Picture.Bitmap) }

finally
Clipboard.Close

end
end;
procedure TForm1.btnPasteClick(Sender: TObject);
begin
Clipboard.Open;
try
Edit2.Text := Clipboard.AsText;
Image2.Picture.Assign(Clipboard) {or Image2.Picture.Bitmap.Assign(Clipboard)}

finally
Clipboard.Close

end
end;

type
TDataRecord = packed record
Number1, Number2: Longint;
AString: String[255];

end;
var
CF_CLINICRECORD: Word;

procedure TForm1.FormCreate(Sender: TObject);
begin
CF_CLINICRECORD := RegisterClipboardFormat('Clinic Data Record');

end;

	Data Aware Control Request
	Clipboard

